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This paper considers decentralized Federated Learning (FL) under het-
erogeneous distributions among distributed clients or data blocks for the M-
estimation. The mean squared error and consensus error across the estima-
tors from different clients via the decentralized stochastic gradient descent
algorithm are derived. The asymptotic normality of the Polyak–Ruppert (PR)
averaged estimator in the decentralized distributed setting is attained, which
shows that its statistical efficiency comes at a cost as it is more restrictive on
the number of clients than that in the distributed M-estimation. To overcome
the restriction, a one-step estimator is proposed which permits a much larger
number of clients while still achieving the same efficiency as the original
PR-averaged estimator in the nondistributed setting. The confidence regions
based on both the PR-averaged estimator and the proposed one-step estimator
are constructed to facilitate statistical inference for decentralized FL.

1. Introduction. The stochastic gradient descent (SGD) algorithm is a commonly used
method for M-estimation in applications of statistical learning, which is known for more
efficient computation than the traditional gradient descent (GD) algorithm. The SGD was
proposed by Robbins and Monro (1951) in the context of the sequential estimation, which
avoids calculating gradients using the entire dataset, but only one observation at a time. The
consistency and the asymptotic normality of the SGD-based estimators were established in
Chung (1954), Ruppert (1988), and Polyak and Juditsky (1992). The rationale behind the
SGD procedure is that at each time the calculated gradient is an unbiased estimator of the
gradient of the population objective function. The difference between the SGD iteration and
the minimizer of the population function can be viewed as a weighted averaging of past
gradient noises, and thus the consistency of the SGD iteration follows. The averaging when
the step size ηt = O(t−α) at time t with 1/2 < α < 1 is called the Polyak–Ruppert (PR)
averaging. It is noted that for α = 1, averaging all past estimates will lead to less efficient
estimation due to the introduced strong serial correlation with a smaller step size.

To facilitate SGD-based statistical inference in a full sample, Fang, Xu and Yang (2018)
proposed a bootstrap SGD iteration for online inference of the true parameter in the M-
estimation. To estimate the asymptotic covariance matrix of the PR-averaged estimator, Chen
et al. (2020a) constructed two covariance estimators. One was a sample covariance type es-
timator called the batch-means estimator and the other was an online plug-in estimator. The
batch-means estimator was later extended to a fully online version by Zhu, Chen and Wu
(2023). Lee et al. (2022) studied an online random scaling algorithm that led to confidence
intervals with more accurate coverage than the batch-means approach.

However, it is often the case that communication is restricted among the data samples due
to divided ownership, as the data are often collected and stored by different clients (Gu and
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Chen, 2023). The difference among clients can create heterogeneity among the data distribu-
tions of the clients. These realities have motivated a new M-estimation framework called Fed-
erated Learning (FL) (McMahan et al. (2017)) which is gaining popularity, where a weighted
average of local risk functions identifies the parameter of interest. The clients are required to
collaboratively solve this heterogeneous M-estimation problem, while keeping the non-i.i.d.
training data stored locally (Li et al. (2020), Kairouz et al. (2021)).

The local SGD algorithm (Stich (2019)) is proposed to solve the FL problem, which allows
the clients to run their respective SGD in parallel and synchronizes the local parameter esti-
mates every τ (τ ≥ 1) steps via a central server. To alleviate the communication burden of the
central host in the FL, the local SGD algorithm is further generalized to the DFL algorithm
(Wang and Joshi (2021)), which synchronizes the local parameter estimates in a decentral-
ized style. That is, the clients only share gradient information with their neighbors according
to a network during the optimization. This algorithm extends the decentralized SGD (τ = 1)
algorithm (Lian et al. (2017)), which, in turn, is an extension of both the nondistributed SGD
algorithm and the decentralized GD algorithm (Yuan, Ling and Yin (2016)).

Most of the existing analysis focused on the constant step size scenario for the SGD-based
algorithms (Wang and Joshi (2021), Alghunaim and Yuan (2022)) with only a few exceptions
(Li et al. (2022)), which typically leads to asymptotically biased estimators. Moreover, the
existing studies tended to treat K , the number of clients in the FL network as fixed, not
reflecting the reality that the number of clients can increase along with the local sample
size. One applicable setting of the double asymptotic is the large mobile networks, where the
mobile keyword prediction is performed based on users’ historical text data as in the GBOARD

project of Google (Hard et al. (2018)) and the QUICKTYPE KEYBOARD by Apple (Apple
(2019)). Another setting is the modern Internet-of-Things (IoT) networks, where wearable
devices are used for health event prediction (Pantelopoulos and Bourbakis (2010), Chen et al.
(2020b)) or the autonomous vehicles control (Chen and Cui (2024)). In both settings, the FL
is used to train a model, where the clients are the device users and the local sample size refers
to the amount of data produced by each device. Given the large number of mobile devices, it
is reasonable to consider the double asymptotic setting where the number of clients increases
with the local sample size.

This paper considers statistical inference for the heterogeneous M-estimation based on
the most general DFL algorithm, which includes many distributed SGD-based algorithms
mentioned as special cases. We derive the mean squared error (MSE) bound for the spatially
averaged trajectory and the consensus error bound of the local estimates across clients. For
each fixed number of clients K , the almost sure convergence of the averaged trajectory is
derived. We also establish the asymptotic normality of a DFL version of the Polyak–Ruppert
(PR) averaged estimator. Our study reveals that the PR-averaged estimator in the context of
DFL is efficient in the sense that its asymptotic variance is the same as that of the full-sample
M-estimator if K is either finite or diverges at the rate o(T 2α−1), where T is the common
local sample size and α ∈ (1/2,1) is the diminishing rate in the SGD step size ηt = O(t−α).

To allow a higher divergence rate for the number of clients K in the PR-averaged estimator,
we propose a computation-efficient one-step estimator that is also statistically efficient but
permits K = o(T ). The proposed one-step estimator utilizes the PR-averaged estimator with a
smaller step size (α = 1) as an initial estimator and a correction term to improve its statistical
efficiency. Regardless the objective functions being the second-order differentiable or not,
confidence regions based on both the PR-estimator and the one-step estimator are constructed
in the DFL context, respectively, with asymptotically correct coverages. We also discuss the
impacts of the sparse connectedness of the connection network.

The paper is organized as follows. The framework for the DFL estimation is outlined in
Section 2 with a review of the statistical properties of the SGD estimators. The mean squared
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error of the averaged estimator, the consensus error across clients and the asymptotic normal-
ity of the PR-averaged estimator are derived in Sections 3 and 4 to motivate the construction
of the efficient one-step DFL estimator. The construction of the confidence region for the
estimators are shown in Sections 4 and 5. The statistical properties of the proposed one-step
estimator are revealed in Section 6. Section 7 reports simulation results to verify the theoret-
ical results. Section 8 concludes with a discussion. Extra technical details are reported in the
Supplementary Material (SM) (Gu and Chen (2024)).

2. Preliminaries. A typical federated learning (FL) setting involves K clients, and we
define fk(·; ξ k) as the loss function specific to the kth client and Fk(θ) = EPk

(fk(θ; ξ k)) as
the corresponding risk function, where ξ k is drawn from an unknown distribution Pk . We do
not assume {Pk}Kk=1 being identical to accommodate heterogeneity across the clients’ local
data distributions. We write EPk

(·) as E(·) for simplicity. Define the federated risk function

(1) F(θ) =
K∑

k=1

wkFk(θ),

where θ ∈ R
d is the parameter of interest, {wk}Kk=1 is a set of positive pre-specified weights

such that
∑K

k=1 wk = 1. The purpose of the FL is to estimate the parameter θ∗
K defined as

(2) θ∗
K = arg min

θ∈�
F(θ),

where the subscript K reflects the dependence on the number of clients and � is the param-
eter space. For each client k, the observations Dk = {ξ k

t }nk

t=1 are independent and identically
distributed (i.i.d.), drawn from Pk , and nk is the local sample size. The full dataset of all
clients is D = ⋃K

k=1 Dk , leading to the overall sample size N = ∑K
k=1 nk .

In the conventional setting where one has dataset D and the full data communication
among the local datasets is available, one can minimize the empirical version of (2), namely,∑K

k=1 wkn
−1
k

∑nk

t=1 fk(θ; ξ k
t ) to obtain the full sample M-estimator of θ∗

K

(3) θ̂K = arg min
θ∈�

K∑
k=1

wk

(
1

nk

nk∑
t=1

fk

(
θ; ξ k

t

))
,

which is usually solved using the gradient-based methods.
However, the above setting of the M-estimation is infeasible for the FL scenario consid-

ered in this work since the pre-given datasets Dk are not available. Instead, each client’s local
dataset are incrementally gathered, making the setting more aligned with the sequential es-
timation as outlined in Section 2.2, where each client or cluster contributes one datum at a
time. Hence, it is more appropriate to use the number of step sizes T to represent the sample
sizes of the local datasets Dk such that nk = T for all 1 ≤ k ≤ K . Throughout this paper,
when we refer to an estimator of θ∗

K as asymptotically efficient, we imply that the estimator
possesses the same asymptotic variance as the estimator

(4) θ̂K = arg min
θ∈�

K∑
k=1

wk

(
1

T

T∑
t=1

fk

(
θ; ξ k

t

))
.

This work assumes that there exist positive constants b1 and b2 such that b1 ≤ wkK ≤ b2
for 1 ≤ k ≤ K . The most popular choice of the weights is the equal weights wk = K−1

(Kairouz et al. (2021)), that treats all the clients equally. If we know the sampling distribution
of the clients, the sampling weights may be used as the {wk}Kk=1 (Wang et al. (2021)). We
consider statistical optimization and inference for θ∗

K in the DFL setting, which generalizes
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FIG. 1. A connection network with 6 nodes (left) and its connection matrix C (right) according to the Metropolis–
Hastings rule.

the nondistributed SGD (Robbins and Monro (1951)), based on a connection network where
the clients are seen as nodes, where only connected notes are permitted to communicate.

Throughout the paper, we use ‖A‖2 = supx �=0 ‖Ax‖2/‖x‖2 and ‖A‖F =
√

tr(AT A) to
denote the spectral and Frobenius norms of the matrix A ∈ R

K×K , respectively, where tr is
the trace operator. We use A � B to show that for symmetric matrices A and B , A − B is
semi-positive definite. We denote the d-dimensional vector of ones as 1d , and the identity
matrix and d−11d1T

d by I and J , respectively. We assume that the parameter space � is
convex and closed, and denote Rd := supθ ,θ ′ ‖θ − θ ′‖2 < ∞ as the diameter of � when it is
bounded. By M�, we denote the metric projection operator onto the parameter space �, that
is, M�(x) = arg minx′∈� ‖x − x′‖2. Note that the metric projection operator is a nonexpand-
ing operator, that is, ∥∥M�(x) − M�

(
x′)∥∥

2 ≤ ∥∥x − x′∥∥
2 ∀x,x′ ∈ R

d .

We define similarily the matrix form of the metric projection operator M�, that is, for X =
(x1,x2, . . . ,xK) ∈ R

d×K , M�(X) = (M�(x1), M�(x2), . . . , M�(xK)).
In the following, we first define the connection network, upon which the DFL algorithm

is formally stated. Then, we review the statistical properties of the classical nondistributed
SGD algorithm to prepare for the theoretical results of the DFL algorithm.

2.1. The connection network. The connection network of the participating clients in the
FL system is defined by an undirected graph G = (V,E) where V = {vk}Kk=1 represents the
set of clients and E specifies the edge set such that (i, j) ∈ E if and only if clients i and j are
connected. We assume that there is a self-loop for each client (node) such that (i, i) ∈ E for
1 ≤ i ≤ K . Let C = (cij ) ∈ R

K×K be a symmetric connection matrix defined on G = (V,E),
where cij is a nonnegative constant that specifies the contribution of the j th data block to the
estimation at node i. It is required that cij > 0 if and only if (i, j) ∈ E and

∑K
j=1 cij = 1 for

all i. An example of the connection matrix is the Metropolis–Hastings (MH) rule (Boyd et al.
(2006)), which has

(5) cij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if (i, j) /∈ E,(
max{di, dj })−1 if (i, j) ∈ E and i �= j,

1 −
K∑

s=1,s �=i

ci,s if i = j,

where di is the number of connected neighbors of node i (out-degree). Figure 1 illustrates a
decentralized FL system with 6 nodes and the corresponding connection matrix C.
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2.2. The DFL algorithm. Given a connection matrix C, we are to solve the FL prob-
lem (4) by a DFL algorithm designed for the decentralized FL that extends the classical SGD
by allowing multiple local SGD steps between two rounds of communication among the
neighboring clients as specified by C. Let the local parameter estimate conducted on the kth

data block at the t th step of the algorithm be θ̂
k

t , the corresponding matrix of estimates of

all clients be �̂t = (θ̂
1
t , θ̂

2
t , . . . , θ̂

K

t ) ∈ R
d×K , the step size be ηt and the weighted stochastic

gradient matrix be

(6) Ĝt = K
(
w1∇f1

(
θ̂

1
t−1; ξ1

t

)
,w2∇f2

(
θ̂

2
t−1; ξ2

t

)
, . . . ,wK∇fK

(
θ̂

K

t−1; ξK
t

))
.

Here for each k, {ξ k
t }t≥1 are drawn independently and sequentially at each step t from the

distribution Pk . The DFL algorithm (summarized as Algorithm 1 in the SM) proceeds as
follows. At t = 0, all the local estimates are initialized as θ̂0 ∈ R

d . For t = 1,2, . . . , T and
some positive integer τ , if t is divisible by τ , there is a synchronization of the computation
results among neighboring nodes according to C, and the parameter estimates are updated
as �̂t = M�((�̂t−1 − ηtĜt )C); otherwise we update the parameter estimates locally and in
parallel by �̂t = M�(�̂t−1 − ηtĜt ). By allowing τ > 1, the DFL algorithm reduces the total
communication cost by (1−1/τ)×100% as compared with that of the classical SGD (τ = 1).
The communication among the neighboring clients happens at I = {t ∈ N+|t = sτ, s ∈ N+}
where N+ denotes the set of positive integers.

REMARK. There are three types of averaging in the DFL. The first one is the spatial
averaging across the K clients at each step:

ˆ̄θ t = K−1
K∑

k=1

θ̂
k

t ;

the second type is the temporal averaging within a client k for 1 ≤ t ≤ T :

ˆ̄θk
T = T −1

T∑
t=1

θ̂
k

t ;

and the last type is the spatial-temporal averaging

ˆ̄̄
θT = (T K)−1

T∑
t=1

K∑
k=1

θ̂
k

t .

The first one is infeasible in the DFL due to a lack of full communication. Starting from ˆ̄θk
1 :=

θ̂
k

1, the second one can be updated locally and recursively by ˆ̄θk
t+1 = {t ˆ̄θk

t + θ̂
k

t+1}/(t + 1) for
1 ≤ t ≤ T − 1, and the last one can be obtained via one round of full synchronization since
ˆ̄̄
θT = K−1 ∑K

k=1
ˆ̄θk
T . In fact,

ˆ̄̄
θT is the PR-averaged estimator in the DFL algorithm which is

a focus of Section 4.

The difficulty in analyzing the estimates trajectory of the DFL algorithm is largely due
to the decentralized structure, since at each step t of the algorithm, (i) the starting values

{θ̂k

t−1}Kk=1 are different, and (ii) the updating directions {∇fk(θ̂
k

t−1; ξ k
t )}Kk=1 are different.

The following assumption on the connection matrix C is needed for consistent estimation of
θ∗

K by the DFL algorithm, and was proposed in Boyd et al. (2006).



2936 J. GU AND S. X. CHEN

ASSUMPTION 2.1. The K-dimensional connection matrix C satisfies C1 = 1 and
CT = C whose largest eigenvalue is 1 and the absolute values of other eigenvalues are strictly
less than 1, namely max{|λk(C)||k = 2,3, . . . ,K} ≤ ρ < λ1(C) = 1 for some 0 ≤ ρ < 1,
where λk(C) denotes the kth largest eigenvalue of C.

REMARK. This condition is sufficient and necessary to ensure lim
s→∞ Cs = K−11K1T

K .

Specifically, the case of ρ = 0 corresponds to the centralized FL scenario with C =
K−11K1T

K . Applying this result to the DFL algorithm,

lim
s→∞ ĜtC

s =
(

K∑
k=1

wk∇fk

(
θ̂

k

t−1; ξ k
t

))
1T
K.

This implies that the local updates made by Ĝt to the K local estimates at step t , after suf-

ficient rounds of local averaging, are asymptotically equal to
∑K

k=1 wk∇fk(θ̂
k

t−1; ξ k
t ). If one

can properly control the consensus error at the t th step K−1 ∑K
k=1 E(‖θ̂k

t−1 − ˆ̄θ t‖2
2), where

ˆ̄θ t−1 = K−1 ∑K
k=1 θ̂

k

t−1, then
∑K

k=1 wk∇Fk(θ̂
k

t−1) can approximate ∇F( ˆ̄θ t−1), the gradient

of the FL risk function (1) evaluated at θ = ˆ̄θ t−1. Hence, the t th local update −ηtĜt can be

viewed as performing a gradient descent step with −ηt∇F( ˆ̄θ t−1) starting from ˆ̄θ t−1 for all of
the local estimates. Thus, according to the standard theory of the gradient descent algorithm,

the sequence { ˆ̄θ t }t≥1 will converge to θ∗
K (Bottou, Curtis and Nocedal (2018), Choi and Kim

(2022)). In the next section, we will rigorously establish the above argument.

2.3. Properties of conventional SGD. The SGD was introduced by Robbins and Monro
(1951) as a method of stochastic approximation. The task was to find the root θ∗ of the
equation ∇F1(θ) = 0 with θ ∈ R, which is equivalent to finding the minimizer of F1(θ).
For each θ , instead of knowing the value of ∇F1(θ), suppose we can perform a statistical
experiment at θ with a response Yθ = ∇f1(θ; ξ1), where ξ1 is sampled from distribution
P1 such that E(Yθ ) = ∇F1(θ). The Robbins–Monro (RM) procedure for estimating θ∗ starts
from an initial estimate θ̂0 of θ∗ and updates recursively

(7) θ̂t+1 = θ̂t − ηtYθ̂t
,

where ηt is the step size and Y
θ̂t

= ∇f1(θ̂t ; ξ1
t+1), and {ξ1

t }t≥1 are sequentially from P1.
A proper choice of the step size {ηt }t≥1 is critical to the convergence of the RM procedure.

The step size ηt should diminish sufficiently quickly so that the variance of the stochastic
gradients Y

θ̂t
does not affect the convergence. At the same time, it should not diminish too

quickly so that
∑∞

t=1 ηt < ∞, since under such scenario the SGD iterates are not guaranteed
to converge to the true θ∗. Specifically, it is required that

(8)
∞∑
t=1

ηt = ∞ and
∞∑
t=1

η2
t < ∞.

When ηt is of the order O(t−α), the above requirement corresponds to 1/2 < α ≤ 1, under
which Chung (1954) established the following asymptotic properties of the RM procedure.
Let ηt = Dt−α for some D > 0 and T be the total number of sequentially sampled observa-
tions, then when either 1/2 < α < 1 or α = 1 with D > 1/(2∇2F1(θ

∗)),

T α/2(
θ̂T − θ∗) d→N

(
0, σ 2(α,D)

)
as T → ∞, where

σ 2(α,D) =
{
Dσ 2

θ∗/
(
2∇2F1

(
θ∗))

if 1/2 < α < 1,

D2σ 2
θ∗/

(
2∇2F1

(
θ∗)

D − 1
)

if α = 1,

(9)
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and σ 2
θ = Var(∇f1(θ; ξ1)). These suggest that to achieve the same

√
T -convergence rate

for the estimator θ̂T as the regular M-estimator based on T i.i.d. observations, we require a
small step size namely α = 1. To further achieve statistical efficiency for θ̂T when α = 1,
(9) suggests choosing D = 1/∇2F1(θ

∗) as it minimizes σ 2(1,D). This optimal D requires
estimating ∇2F(θ∗), which is the focus of Lai (2003) via the adaptive estimation. It is noted
that σ 2(1,1/∇2F1(θ

∗)) is the same as the asymptotic variance of the full sample M-estimator.
Instead of using the last iteration θ̂T , Ruppert (1988) and Polyak and Juditsky (1992)

suggested to use the average of the SGD trajectory ˆ̄θT = T −1 ∑T
t=1 θ̂ t (the so-called Polyak–

Ruppert (PR) averaging) to estimate θ∗. The intuition is that when the step size of the SGD
trajectory is large, the temporal correlation among the sequence {θ̂t }T −1

t=0 is weak, and averag-
ing the trajectory of the estimates may improve the statistical efficiency. Both studies proved
that when 1/2 < α < 1

(10)
√

T
( ˆ̄θT − θ∗) d→ N

(
0,∇2F1

(
θ∗)−1Cov

(∇f1
(
θ∗; ξ1))∇2F1

(
θ∗)−1)

as T → ∞,

for multivariate θ∗. This means that the PR-averaged estimator ˆ̄θT can achieve the statistical
efficiency without the second-order derivative (Hessian) information. However, when a small

step size (α = 1) is applied in the SGD algorithm, although ˆ̄θT is still
√

T -consistent, it is in
general no longer efficient due to the strong serial correlation.

There are works focusing on inference for the parameter of interest based on the nondis-
tributed SGD (Fang, Xu and Yang (2018), Chen et al. (2020a), Zhu, Chen and Wu (2023),
Lee et al. (2022)). However, these studies are not applicable to the decentralized FL problem.
We will investigate both the finite and asymptotic properties of the SGD iteration in DFL,
and establish the corresponding statistical inference procedure in the current new context.

Following the literature on the SGD-based estimation, we impose the following assump-
tion on the step sizes in the DFL algorithm.

ASSUMPTION 2.2. The step sizes {ηt }t≥1 in the DFL algorithm satisfy ηt = D(t + γ )−α

for some positive constants D, γ , and 1/2 < α ≤ 1.

This is a standard condition on the decaying rate of the step sizes, which satisfies the
classical constraint (8), and has been assumed in the existing SGD-based inference literature
(Chen et al. (2020a, 2024)).

3. Nonasymptotic analysis of SGD iteration in DFL. First, we establish an upper

bound of the consensus error K−1 ∑K
k=1 E(‖θ̂k

t − ˆ̄θ t‖2
2) of the DFL algorithm, characterizing

the deviation of the local estimators {θ̂k

t }Kk=1 to their average ˆ̄θ t . Based on the bound, we

derive an upper bound of the mean squared error (MSE) E(‖ ˆ̄θ t − θ∗
K‖2

2) of ˆ̄θ t , generalizing
the upper bound for the nondistributed SGD (Bottou, Curtis and Nocedal (2018)).

3.1. Consensus error bound. The following assumptions are needed to establish the up-
per bound of the consensus error.

ASSUMPTION 3.1. There exists nonnegative constants Lξ and σ 2, and a positive integer
v such that the gradient noise εk(θ; ξ k) = ∇fk(θ; ξ k) − ∇Fk(θ) satisfies E(‖εk(θ; ξ k)‖2s

2 ) ≤
σ 2s + Lξ‖∇Fk(θ)‖2s

2 for all positive integers s ≤ v, θ ∈ �, and k = 1,2, . . . ,K .

ASSUMPTION 3.2. For k = 1,2, . . . ,K , the objective function Fk(·) is differentiable,
convex and L-smooth with a positive constant L such that for any θ1, θ2 ∈ �,

(11) 0 ≤ Fk(θ1) − Fk(θ2) − 〈∇Fk(θ2), θ1 − θ2
〉 ≤ L

2
‖θ1 − θ2‖2

2.
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ASSUMPTION 3.3. There exist nonnegative constants κ and B such that∑K
k=1 wk‖∇F(θ) − ∇Fk(θ)‖2

2 ≤ κ2 for any θ ∈ �, and ‖∇Fk(θ
∗
K)‖2 ≤ B for all 1 ≤ k ≤ K .

Assumption 3.1 controls the variability of the gradient noise εk(θ; ξ k). It is noted that v =
1 is enough for establishing the nonasymptotic bounds and asymptotic normality of the DFL
estimators. However, we need v = 2 to attain the consistency of the asymptotic covariance
matrix estimator for the construction of the confidence region of the parameter θ∗

K when
the loss function fk is not second-order differentiable as established in Theorem 5. When
v = 1, the σ 2 term allows the variance of εk(θ; ξ k) to be nonzero at any stationary point of
Fk(·). Combined with Assumption 3.2, the Lξ‖∇Fk(θ)‖2

2 term scales quadratically with the
Euclidean distance between θ and θ∗

K , which relaxes the bounded variance condition required
in Lian et al. (2017) and Koloskova, Stich and Jaggi (2019) for the decentralized estimation.
Besides, Nguyen et al. (2019) proved that Assumption 3.1 holds if Fk(θ; ξ k) is convex with
respect to θ given ξ k . Assumption 3.2 is a standard assumption in stochastic optimization,
and is satisfied for many statistical estimation tasks including linear regression and logistic
regression. See Bottou, Curtis and Nocedal (2018) for more discussions.

A challenge for analysing the statistical properties of the decentralized FL is how to control
the consensus error K−1E(‖�̂t (I −J )‖2

F ), since only the local averaging is allowed at every
τ ≥ 1 steps. To tackle the challenge, we first establish the following lemma.

LEMMA 1. Under Assumptions 2.1–2.2, 3.1 with v = 1, and Assumptions 3.2–3.3, there
exist two positive constants BMSE and BCE such that for all 1 ≤ t ≤ T and K ≥ 1, the follow-
ing hold regardless of the parameter space � is bounded by a diameter Rd < ∞ or is Rd :

(12) E
(∥∥ ˆ̄θ t − θ∗

K

∥∥2
2

)
< BMSE and K−1E

(∥∥�̂t (I − J )
∥∥2
F

)
< BCE.

REMARK. The boundedness of the above terms is trivial when the parameter space �
is also bounded. The case when � = R

d is more complicated as the cumulative step size∑t
s=1 ηs diverges to infinity. This lemma implies that the expected norms of the stochastic

gradient matrix scaled by K− 1
2 is bounded, that is, K−1E(‖Ĝt‖2

F ) < C3 for some positive
constant C3 > 0. Thus, the whole process driven by the DFL algorithm is bounded.

THEOREM 1. Under Assumptions required in Lemma 1 and for all 1 ≤ τ ≤ t ≤ T and
K ≥ 1, the consensus error in the DFL algorithm satisfies

1

K
E

(∥∥�̂t (I − J )
∥∥2
F

) ≤ 3b2
2Q

(
2(Lξ + 1)δ

(
t, ρ̃2, τ

) +
(
(τ − 1) + I{ρ̃>0}

1 − ρ̃

)
δ(t, ρ̃, τ )

)
+ 2σ 2b2

2δ
(
t, ρ̃2, τ

)
,

(13)

where b2 is the constant such that wkK ≤ b2 for all k, ρ̃ = ρ
1
τ ,

Q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ2 + 2L2R2

d if � is bounded by diameter

Rd = sup
θ1,θ2∈


‖θ1 − θ2‖2 < ∞,

κ2 + L2(BMSE + BCE) if � = R
d,

δ(t, a, τ ) :=
(

t∑
s=t−τ+2

η2
s

)
+ I{a>0}

1 − a

(
η2

1a
(t−τ+1)/2 + η2�(t−τ+1)/2�

)
for any a ∈ (0,1), and BMSE and BCE are constants defined in Lemma 1.
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REMARK. It is noted that the diminishing rate of the consensus error bound (13) in The-
orem 1 is determined by the order of δ(t, τ, a) (14) with a ∈ {ρ̃, ρ̃2}, which consists of three
terms. First, it is straightforward to see that both the first term

∑t
s=t−τ+2 η2

s and the third
term η2�(t−τ+1)/2� are O(η2

t ). Besides, since ρ̃ < 1, it is easy to show that the second term

ρ̃t/2 = o(η2�t/2�) as t increases. Thus, this theorem informs that there exists a universal con-

stant c0 such that the consensus error in the DFL algorithm K−1E(‖�̂t (I − J )‖2
F ) ≤ c0η

2
t

for all 1 ≤ t ≤ T . In contrast, the existing studies on DFL are usually based on a constant step
size (Wang and Joshi (2021)), under which scenario the SGD iteration is biased.

The consensus error upper bound (13) is affected by hyperparameters including ηt , τ

and ρ. It becomes larger for larger step size ηt = D(t + γ )−α with α < 1. To see the roles
of ρ and τ , we note that ρ is mainly related to the last two terms of δ(t, ρ, τ ) through
I{ρ>0}(1 − ρ)−1, which becomes larger as ρ → 1. On the other hand, the network becomes
denser as ρ → 0. When ρ = 0, the DFL algorithm reduces to the centralized version, and the
last two terms vanish. The local update parameter τ mainly contributes to the first term of
δ(t, ρ, τ ), and all the past τ − 1 step sizes contributes to the current consensus error. When
τ = 1, the first term vanishes. The local update procedure also enlarges the upper bound when
τ > 1 through transforming ρ into ρ̃ = ρ1/τ > ρ. From this perspective, the per τ -steps lo-
cal update procedure via the connection matrix C is approximately equivalent to applying
the classical decentralized SGD (without local update) (Lian et al. (2017)) under a sparser
network with the connection matrix C̃ = C1/τ , as a larger ρ means a sparser connection net-
work (Nedić, Olshevsky and Rabbat (2018)). Finally, when τ = 1 and ρ = 0, the upper bound
in (13) equals zero, which perfectly matches the definition of the consensus error.

3.2. MSE bounds of the DFL sequence. In addition to the consensus error, the mean

squared error of the averaged sequence { ˆ̄θ t }t≥1 starting from an initial value θ̂0 is also of

interest. We have shown in Theorem 1 that the local estimators {θ̂k

t }Kk=1 gradually concen-

trate to their spatial average ˆ̄θ t at the rate of the step size ηt . However, the theorem only
reflects the variability of the local estimators across the clients due to the decentralized struc-
ture of the network and the local update procedure applied in the DFL algorithm, and does

not imply the consistency of either the local estimators {θ̂k

T }Kk=1 or their spatial average
ˆ̄θT as the local sample size T increases. In fact, one can only establish the boundedness

of
∑T

t=0 ηt+1E(‖∇F( ˆ̄θ t )‖2
2) (see Lemma S4 in the SM), which suggests that the expected

gradient norms can not be bounded away from zero, matching results established for the
nondistributed SGD (Theorems 4.9 and 4.10 in Bottou, Curtis and Nocedal (2018)).

To establish an upper bound of E(‖ ˆ̄θ t − θ∗
K‖2

2) for 1 ≤ t ≤ T and K > 1, a condition
stronger than convexity is necessary. We impose the following condition which deals with
both the unbounded (� =R

d ) and bounded parameter space (Rd < ∞), respectively.

ASSUMPTION 3.4. For all k = 1,2, . . . ,K , Fk(·) is differentiable and (strongly-)convex,
and let μ be the corresponding largest nonnegative constant such that for any θ1, θ2 ∈ R

d

(14)
μ

2
‖θ1 − θ2‖2

2 ≤ Fk(θ1) − Fk(θ2) − 〈∇Fk(θ2), θ1 − θ2
〉
.

If μ > 0, the parameter space � is allowed to be unbounded, for instance, Rd . If μ = 0, � is
required to be bounded with Rd = supθ1,θ2∈
 ‖θ1 − θ2‖2 < ∞, and the federated objective
function F(·) = ∑K

k=1 wkFk(·) satisfies a generalized self-concordance property. The latter
means that there exist positive constants μ∗ and BG such that:

(i) F(·) is three-times differentiable, and ∇2F(θ∗
K) � μ∗I ;
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(ii) for any θ1, θ2 ∈ �, ϕ′′′(t) ≤ BG‖θ1 − θ2‖2ϕ
′′(u), where ϕ : u �→ F(θ1 +u(θ2 − θ1))

for u ∈ R;
(iii) ‖∇F(θ)‖2 ≤ BG for all θ ∈ �.

REMARK. The global strong convexity property assumed in Assumption 3.4 with μ > 0
is critical for establishing an upper bound of the following type in nondistributed SGD
(K,τ = 1):

(15) E
(∥∥θ̂1

t − θ∗
1
∥∥2

2

) ≤ Cηt

for all 1 ≤ t ≤ T , where C is a positive constant. The upper bound is obtained by iterating
back the following inequality to the initial estimates:

(16) E
(∥∥θ̂1

t − θ∗
1
∥∥2

2

) ≤ (1 − μηt)E
(∥∥θ̂1

t−1 − θ∗
1
∥∥2

2

) + C′η2
t ,

where μ > 0 is the corresponding global convexity parameter and C′ is a positive con-
stant. While μ > 0 has been assumed in existing works (Bottou, Curtis and Nocedal (2018),
Chen et al. (2020a, 2024)), and is satisfied in many estimation problems including the lin-
ear regression, it fails to hold for tasks such as the logistic regression. To fix this issue, we
restrict the parameter space to be bounded with Rd = supθ1,θ2∈
 ‖θ1 − θ2‖2 < ∞. More-
over, we introduce the generalized self-concordance property in Assumption 3.4 for μ = 0,
which has been assumed in Bach (2010, 2014) in the analysis of nondistributed SGD esti-
mation for the logistic regression with a constant step size. In particular, the condition (ii)
is quite nonstandard, requiring that for all θ1, θ2 ∈ �, ϕ′′′(t) ≤ BG‖θ1 − θ2‖2ϕ

′′(u), where
ϕ : u �→ F(θ1+u(θ2−θ1)) for u ∈ R. This condition properly controls the third-order deriva-
tive of the objective function with its second-order derivative. The next theorem 2 first estab-

lishes an iterative bound (18) of the mean squared error E(‖ ˆ̄θ t − θ∗
K‖2

2), similar to (16). The
theorem needs us to define

(17) μRd
=

⎧⎪⎪⎨⎪⎪⎩
(

μ

2L
+ 1

2

)
μ if μ > 0 and

μ2∗
(

2L

(
4 + 16B2

GR2
d

9

))−1
if μ = 0,

where μ and L are defined in (14) and Assumption 3.2, respectively. It also need constants μ∗
and BG defined in Assumption 3.4 (i) and (ii), respectively. When the global strong convexity
parameter μ = 0, μRd

decays quadratically with respect to the diameter Rd of the parameter
space �. Besides, it only depends on the Hessian of the population objective function at the
true parameter instead of the whole parameter space �. We will see explicitly the benefit of
the generalized self-concordance property in (i) of Theorem 2.

THEOREM 2. Under Assumptions 2.1–2.2, 3.1 with v = 1, and Assumptions 3.2–3.4, let

�t = ˆ̄θ t − θ∗
K , then the following results hold.

(i) For all 0 ≤ t < T and K ≥ 1,

(18) E
(‖�t+1‖2

2
) ≤ (1 − μRd

ηt+1)E
(‖�t‖2

2
) + ηt+1

(
c1

ηt+1

K
+ c2

1

K
E

(∥∥�̂t (I − J )
∥∥2
F

))
,

where c1 = b2σ
2 + 3b3

2Lξκ
2 and c2 = 3b2(L + μ).

(ii) If D > 2/μRd
and γ > 0 such that η1 ≤ D/(DμRd

− 1), and let c0 be a positive
constant such that K−1E(‖�̂t (I − J )‖2

F ) ≤ c0η
2
t as implied in Theorem 1, then

(19) E
(‖�t‖2

2
) ≤ v1

ηt

K
+ v2η

2
t ,

where v1 = c1D/(DμRd
− 1) and v2 = max{c2c0D/(DμRd

− 2), (γ + 1)2‖θ̂0 − θ∗
K‖2

2D
−2}.

(iii) For each fixed K , ˆ̄θT − θ∗
K → 0d almost surely as T → ∞.
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It is noted that (i) of Theorem 2 establishes an iterative bound similar to (16) but for
the DFL. First, if we only restrict the parameter space to be bounded when μ = 0 without
assuming the generalized self-concordance property, then μRd

in (18) will be replaced by
μ̃Rd

, which is

μ̃Rd
=

⎧⎪⎨⎪⎩
(

μ

2L
+ 1

2

)
μ if μ > 0 and

sup
{
c > 0|∇2F(θ) � cI for all θ ∈ �

}
if μ = 0.

When μ = 0, it can be shown that μ̃Rd
decays exponentially fast with respect to the diameter

Rd in the logistic regression problem. In comparison, the bound (18) is much tighter with
μRd

, as μRd
has an explicit quadratic dependence on the inverse of Rd and only depends

on the eigenvalue of ∇2F(θ) at θ∗
K . It can also be seen that due to the consensus error in

the DFL, there is an extra term in (18) compared with the nondistributed counterpart (15).
This leads to the extra v2η

2
T term in (19) of the (ii) part of the theorem compared with the

MSE bound of the nondistributed SGD iteration (Bottou, Curtis and Nocedal (2018)). The
extra term is asymptotically negligible compared with the leading v1ηT /K term as the local
sample size T increases to infinity if K is finite. However, as the FL is developed largely for
model training for large distributed systems, it is appropriate to allow K to increase with T

at some rate. In this case, v2η
2
T can dominate the upper bound in (19) when K increases

faster than T α . We will show how the consensus error affect the asymptotic properties of the

PR-averaged estimator
ˆ̄̄
θT in Theorem 3 in the next section.

The decentralized structure C affects the MSE bound only through c0, and is thus a second-
order effect for moderate K . Besides, it can be seen that the initialization error is also of
second-order, as it only appears in the definition of v2. Moreover, the heterogeneity factor κ2

enlarges the v1 term when Lξ > 0. However, if all the gradient noise has bounded variance
σ 2 so that Lξ = 0, the heterogeneity effect is confined to the second-order.

In part (iii), the almost sure convergence of the averaged estimator ˆ̄θT for fixed K can be
viewed as a generalization of the Robbins and Siegmund (1971) result for the nondistributed
SGD, which is based on the martingale convergence theorem. However, for K diverging
with T , the almost sure convergence property no longer holds in general since the Doob’s
upcrossing inequality (Hall and Heyde (1980)) does not have a triangular array version.

4. Online statistical inference for the Polyak–Ruppert (PR) procedure in DFL. Re-
call that in the nondistributed SGD (7), the PR procedure achieves efficiency by first adopt-
ing a larger step size ηt = O(t−α) with 1/2 < α < 1 and then averaging the SGD trajectory,
as presented in (10). For the DFL, the corresponding PR-averaged estimator is the spatial-

temporal averaged estimator
ˆ̄̄
θT = (T K)−1 ∑T

t=1
∑K

k=1 θ̂
k

t as defined in Section 2. In this

section, we will establish the asymptotic normality of the estimator
ˆ̄̄
θT by allowing both K

and T to diverge to infinity, and provide one-pass algorithms for statistical inference tasks.

4.1. Asymptotic normality. We first outline some assumptions.

ASSUMPTION 4.1. For k = 1,2, . . . ,K , the objective function fk(·; ·) is L-average
smooth with a positive constant La such that for any θ1, θ2 ∈ �,

(20) E
(∥∥∇fk

(
θ1; ξ k) − ∇fk

(
θ2; ξ k)∥∥2

2

) ≤ La‖θ1 − θ2‖2
2.

This assumption is stronger than the smoothness condition in Assumption 3.2, and holds
for common objective functions such as those for the linear regression, the ridge regression,
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and the logistic regression if ξ k has certain bounded moments; see the Supplementary Mate-
rial of Su and Zhu (2018) for more details.

ASSUMPTION 4.2. There exist positive constants ℓcov, δ and Ce such that for all k =
1,2, . . . ,K , Sk = E(εk(θ

∗
K; ξ k)εk(θ

∗
K; ξ k)T ) satisfies Sk � ℓcovI and E(‖ε(θ∗

K; ξ k)‖2+δ
2 ) <

Ce for all K ≥ 1, where ε(θ) = √
K

∑K
k=1 wkεk(θ; ξ k).

ASSUMPTION 4.3. The federated risk function F(θ) = ∑K
k=1 wkFk(θ) is second-order

differentiable with respect to θ ∈ �, and the Hessian matrix ∇2F(θ) is Lipschitz continuous
at θ∗

K in the sense that there exists a positive constant LH such that ‖∇2F(θ)−∇2F(θ∗
K)‖2 ≤

LH‖θ − θ∗
K‖2 for all θ ∈ � and K ≥ 1.

The above two assumptions are needed to establish the asymptotic normality of the PR-

averaged estimator
ˆ̄̄
θT . In fact, the Lipschitz continuity of the Hessian matirx ∇2F(θ) at

θ∗
K is only needed when K increases to infinity with T , under which circumstance the aver-

aged estimator ˆ̄θT = K−1 ∑K
k=1 θ̂T in general does not possess the almost sure convergence

property as discussed after Theorem 2.

THEOREM 3. Under assumptions required in Theorem 2 and Assumptions 4.1, 4.2
and 4.3, if K is either finite or diverges at the rate o(T 2α−1) with α < 1 and sup

K≥1
‖θ∗

K‖2 < ∞,

we have

(21)
√

T KS−1/2H
( ˆ̄̄
θT − θ∗

K

) d→ N (0, I ) as T → ∞,

where H = ∇2F(θ∗
K) is the population Hessian matrix, S = E(ε(θ∗

K)ε(θ∗
K)T ) is the covari-

ance matrix of the aggregated gradient noise, and ε(θ) is defined in Assumption 4.2.

The
√

T K convergence of
ˆ̄̄
θT − θ∗

K is the same as that of a regular M-estimator based on

T K-order independent observations. Besides, the asymptotic variance of
ˆ̄̄
θT is H−1SH−1,

which is the same as that of the full sample M-estimator (4).
While Theorem 3 shows that the Polyak–Ruppert averaging procedure can still achieve

statistical efficiency when 1/2 < α < 1 in the DFL, this gain in statistical efficiency comes at
a price in terms of a slower divergence rate for K . In the DFL scenario, a larger step size will

lead to a larger bias (consensus error) among the local estimators {θ̂k

t }Kk=1, which can not be
eliminated by the averaging. As a consequence, the bias term could potentially dominate the

would-be leading term that facilitates the asymptotic normality of the estimator
ˆ̄̄
θT , which

in turn restricts the allowable increasing rate of K relative to T . We will discuss how to
relax this K = o(T 2α−1) restriction in Section 6. Before that, to facilitate statistical inference

based on the asymptotic normality of the PR-averaged estimator
ˆ̄̄
θT , we need to construct

asymptotically valid confidence regions. To this end, we need to consistently estimate both
the covariance matrix of noise S and the aggregated Hessian matrix matrix H .

4.2. One-pass estimation of covariance matrix. We begin by noting that

S = K

K∑
k=1

w2
kE

(
εk

(
θ∗

K; ξ k)εk

(
θ∗

K; ξ k)T )
,
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which motivates us to estimate each of those Sk locally and combine them with only one
round of global synchronization. Define

(22) Ŝk = 1

T

T −1∑
t=0

∇fk

(
θ̂

k

t ; ξ k
t

)∇fk

(
θ̂

k

t ; ξ k
t

)T − 1

T 2

(
T −1∑
t=0

∇fk

(
θ̂

k

t ; ξ k
t

))(
T −1∑
t=0

∇fk

(
θ̂

k

t ; ξ k
t

))T

.

Then, an estimator of S can be constructed as

(23) Ŝ = K

K∑
k=1

w2
k Ŝk.

The second term in (22) is necessary in the expression of Ŝk since generally ∇Fk(θ
∗
K) �= 0d×1

due to the heterogeneity across the clients.

4.3. One-pass estimation of the Hessian matrix for smooth loss functions. When the local
objective functions {fk(·; ·)} are smooth namely second-order differentiable with respect to θ ,
we propose a plug-in estimator as follows. Let a(·) :N+ → N+ be a nondecreasing function,
then the estimators of H k = ∇2Fk(θ

∗
K) and H can be defined as

(24) Ĥ k = 1

a(T )

a(T )−1∑
s=0

∇2fk

( ˆ̄θk
T −s−1; ξ k

T −s

)
and Ĥ =

K∑
k=1

wkĤ k,

respectively. Direct estimation of the Hessian matrix as given in (24) is often considered to be

computationally expensive since each ∇2fk(
ˆ̄θk
T −s−1; ξ k

T −s) consists of d2 elements which is

large compared with the d elements of the gradient ∇fk(
ˆ̄θk
T −s−1; ξ k

T −s). Besides, typically
we need a(T ) → ∞ as T → ∞ to ensure the consistency of Ĥ k under the nondistributed
scenario. It is noted that Fang, Xu and Yang (2018) proposed an offline plug-in estimator for
the Hessian matrix, and Chen et al. (2020a) generalized the procedure to an online version.
Later, Li et al. (2022) proposed a corresponding centralized FL version under finite K sce-
nario. In all these works, the condition a(T ) → ∞ is required. However, given the fact that
the number of clients K is usually large in the FL scenario, any single Hessian matrix H k

contributes little to the final aggregated matrix H = ∑K
k=1 wkH k , which suggests that we

may not need to consistently estimate each H k . Instead, the law of large numbers takes effect
as K → ∞ and thus we can derive the consistency of

∑K
k=1 wkĤ k as a whole. Hence, a(T )

can be some finite number only to stabilize the numerical performance of Ĥ . In this sense,
Ĥ k can be computed efficiently for each client k.

To provide a theoretical guarantee on the consistency of Ĥ , we need the following as-
sumption, which is a stronger version of Assumption 4.3.

ASSUMPTION 4.4. For all k = 1,2, . . . ,K , we assume that the objective function
fk(θ; ξ) is second-order differentiable with respect to θ ∈ �, and there exists positive con-
stants ℓH and H , such that√

E
(∥∥∇2fk

(
θ; ξ k) − ∇2fk

(
θ∗

K; ξ k)∥∥2
2

) ≤ ℓH

∥∥θ − θ∗
K

∥∥
2

and E(‖∇2fk(θ
∗
K; ξ k) − ∇2Fk(θ

∗
K)‖2

2) ≤ H 2, where θ ∈ � and θ∗
K is the true value defined

in (2).

THEOREM 4. Under assumptions required in Theorem 2 and Assumptions 4.1, 4.2
and 4.4, if K = o(T 2α−1) and Ka(T ) → ∞, α < 1, sup

K≥1
‖θ∗

K‖2 < ∞ and
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sup
K≥1

max
1≤k≤K

‖∇Fk(θ
∗
K)‖2 < ∞, then ‖�̂ − H−1SH−1‖2 = op(1) and for any β ∈ (0,1),

(25) P
(
T K

( ˆ̄̄
θT − θ∗

K

)T
�̂

−1( ˆ̄̄
θT − θ∗

K

) ≤ χ2
d,β

) → 1 − β as T → ∞,

where χ2
d,β is the upper β quantile of the χ2

d distribution, �̂ = Ĥ
−1

ŜĤ
−1.

This theorem is readily useful for the construction of the 1 − β confidence region for θ∗
K

(26)
{
θ |T K(

ˆ̄̄
θT − θ)T �̂

−1
(
ˆ̄̄
θT − θ) ≤ χ2

d,β

}
.

5. One-pass estimation of the Hessian matrix for nonsmooth loss functions. In some
statistical applications including the Huber regression and quantile regression, the local ob-
jective functions fk(·; ·) are not second-order differentiable, which means that the plug-in es-
timator (24) for the aggregated Hessian matrix is not longer applicable. It is also of practical
value to further reduce the computational complexity of the statistical inference procedure by
developing the first-order method, even if the loss functions fk(·; ·) are second-order differ-
entiable. To this end, in the nondistributed SGD or the centralized FL scenarios, (Chen et al.
(2020a), Zhu, Chen and Wu (2023)) proposed a batch-means estimator which directly esti-
mated the asymptotic covariance matrix of the PR-averaged estimator, and Lee et al. (2022)
and Li et al. (2022) proposed a random scaling estimator which facilitates the statistical in-
ference justified by a functional central limit theorem. However, both estimators required
frequent spatial averaging among the local estimators, which was unrealistic in the DFL set-
ting.

Motivated by Ruppert (1988), we propose a regression-based estimator. This estimator

only uses {θ̂k

t } and {∇fk(θ̂
k

t−1; ξ k
t )}, which have already been calculated during the opti-

mization, and is thus a first-order method. For simplicity, we first present the idea via the
nondistributed (K = 1) SGD. It is noted that despite the loss function fk(·; ·) may not be
second-order differentiable, the risk function Fk(·) is twice-differentiable. Hence, at each

step t , by Taylor’s expansion of ∇F(θ̂
1
t−1) at θ∗

1,

(27) ∇f
(
θ̂

1
t−1; ξ1

t

) ≈ −∇2F
(
θ∗

1
)
θ∗

1 + ∇2F
(
θ∗

1
)
θ̂

1
t−1 + ε1

(
θ̂

1
t−1; ξ1

t

)
,

where ε1(θ̂
1
t−1; ξ1

t ) = ∇f (θ̂
1
t−1; ξ1

t ) − ∇F(θ̂
1
t−1). For the SGD-based optimization, one nat-

urally have a sequence of estimators {θ̂1
t−1}Tt=1 and the corresponding stochastic gradients

{∇fk(θ̂
1
t−1; ξ1

t )}Tt=1. This motivates us to construct a multiple-response linear regression to

estimate the Hessian matrix ∇2F(θ∗
1), that is, to regress ∇f (θ̂

1
t−1; ξ1

t ) on θ̂
1
t−1 to obtain

Ĥ
reg
1 := Z1V

−1
1 , where

Z1 = C(T ,α)

T∑
t=2

∇f
(
θ̂

1
t−1; ξ1

t

)(
θ̂

1
t−1 − ˆ̄̄

θT −1
)T

,

V 1 = C(T ,α)

T∑
t=2

(
θ̂

1
t−1 − ˆ̄̄

θT −1
)(

θ̂
1
t−1 − ˆ̄̄

θT −1
)T(28)

and

(29) C(T ,α) =
⎧⎨⎩T α−1 if

1

2
< α < 1(

log(T )
)−1 if α = 1.
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To avoid possible singularity of V 1, we use the thresholding version (Chen et al. (2020a)).
Specifically, for a small δ > 0, let the 	D	T be the eigenvalue decomposition of V 1, where
D = (Dij ) is a nonnegative diagonal matrix. The thresholding version Ṽ 1 is

(30) Ṽ 1 = 	D̃	T ,
(
D̃jj

)
= min

{
max{(Djj

)
, δ}, 1

δ

}
,

and the thresholding version of Ĥ
reg
1 is defined as H̃

reg
1 = Z1(Ṽ 1)

−1. Section S3 in the SM
provides the theoretical property of the estimator H̃

reg
1 in the nondistributed SGD setting.

The estimator H̃
reg
1 can be extended to the decentralized FL setting with K > 1. First,

given a positive constant ζ ∈ (0,1/2), we define ri(T ) for i = 1,2,3 such that
∑3

i=1 ri(T ) =
T . Specifically,

(31) r1(T ) =

⎧⎪⎪⎨⎪⎪⎩
T

C1
for α < 1

T 1−ζ

C2
for α = 1

, r2(T ) = T

C3
, and r3(T ) = T

C4
,

where Cj > 1 for 1 ≤ j ≤ 4 are constants. Then, the regression-based estimator Ĥ
reg for the

aggregated Hessian matrix H is Ĥ
reg = ZV −1, where

Z = B
(
T − r3(T ), r1(T ),α

)
K

K∑
k=1

wkZk, V = B
(
T , r1(T ),α

) K∑
k=1

V k.

Zk =
T −r3(T )∑

t=r1(T )+1

(
∇fk

(
θ̂

k

t−1; ξ k
t

) −
(

1

r3(T )

T∑
s=T −r3(T )+1

∇fk

(
θ̂

k

s−1; ξ k
s

)))(
θ̂

k

t−1 − ˆ̄̄
θT −1

)T
,

V k =
T∑

t=r1(T )+1

(
θ̂

k

t−1 − ˆ̄̄
θT −1

)(
θ̂

k

t−1 − ˆ̄̄
θT −1

)T
and B(T1, T2, α) = (C(T1, α)−1 − C(T2, α)−1)−1, where C(T ,α) is defined in (29).

REMARK. In the decentralized FL, there tends to be a large consensus error among the
local estimates during the initial stage as reflected in Theorem 1. Thus, in the above formu-
lation, we have removed the first r1(T ) local estimates by treating them as the warming-up
estimates in the Zk and V k to mitigate the effect of the error. Doing so preserves the or-
ders of both Z and V estimates, which are shown by their respective normalizing constants.
Besides, since ∇Fk(θ

∗
K) �= 0d when K > 1, compared with Z1 in (28), the centering in Zk

is necessary. Furthermore, the use of the estimates over different time segments in Zk is to

remove the conditional dependence between the terms r3(T )−1 ∑T
s=T −r3(T )+1 ∇fk(θ̂

k

s−1; ξ k
s )

and {θ̂k

t }t<T −r3(T ), which helps to improve the estimation accuracy of Ĥ
reg when the number

of clients K is large. See Section S2.5 in the SM for more discussions.

Denote H̃
reg = Z(Ṽ )−1, where Ṽ is the thresholding version of V according to (30). The

following theorem establishes the consistency of H̃
reg.

THEOREM 5. Under Assumptions 2.1–2.2, 3.1 with v = 2, 3.3–3.4, 4.1 and 4.3, if the pa-
rameter space � is bounded with Rd < ∞, K = o(T α) if 1

2 < α < 1 and K = o(log(T )T 1−ζ )

if α = 1, where the constant ζ ∈ (0,1/2) is defined in (31), then as T → ∞
E

(∥∥H̃ reg − H
∥∥
F

) → 0.
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The estimator H̃
reg for H can be used to replace the estimator (24) when the local objective

functions are not second-order differentiable with respect to θ , which facilitates a 1 − β

confidence region for θ∗
K

(32)
{
θ |T K(

ˆ̄̄
θT − θ)T �̃

−1
(
ˆ̄̄
θT − θ) ≤ χ2

d,β

}
,

where �̃ = (H̃
reg

)−1Ŝ(H̃
reg

)−1, and Ŝ is defined in (23).

6. Efficient one-step estimator. We have shown in Theorem 3 that the PR-averaged

estimator
ˆ̄̄
θT is statistically efficient for α ∈ (1/2,1). However, the efficiency comes at a price

in the decentralized FL setting reflected in the restriction that K is either finite or diverging
at the rate K = o(T 2α−1). This is more restrictive than K = o(T ) required in the “split-and-
conquer” paradigm for the distributed inference under both the homogeneous (Zhang, Duchi
and Wainwright (2013)) and the heterogeneous (Gu and Chen (2023)) M-estimation.

The need to restrict on K can be found by examining (19) in Theorem 2. The v1ηT K−1

term is the leading order term in the expansion of ˆ̄θT − θ∗
K , and the second v2η

2
T term can

be viewed as the squared bias (the consensus error) of the local estimates {θ̂k

t }Kk=1. It can be
seen that a large step size with α ∈ (1/2,1), as compared with α = 1, introduces a large ratio
η2

T /(ηT K−1) = O(K/T α). For a fixed K including the nondistributed case (K = 1), the bias
is not a concern. For the distributed scenarios with large K , however, the larger step size
significantly restricts the allowable number K of clients. In particular, if we choose a large
step size with α = 1/2 + ε as suggested in Ruppert (1988) for a small positive constant ε,
then only K = o(T 2ε) clients are allowed to join the FL to preserve the validity of Theorem 3.
This is too restrictive for the FL with large number of clients.

The restriction on K encourages us to choose α = 1 in the estimator
ˆ̄̄
θT when K diverges

with T . Although
ˆ̄̄
θT is inefficient (Sacks (1958), Polyak and Juditsky (1992)) with α = 1 as

in the nondistributed scenario, it is
√

T K-consistent as long as K = o(T ). This motivates us-
ing the strategy of the one-step estimation (Bickel (1975)) to improve the statistical efficiency.

Given the preliminary estimator
ˆ̄̄
θT with α = 1, the one-step estimator is

(33)
ˆ̄̄
θos

T = ˆ̄̄
θT − (Ĥ )−1 1

T

T∑
t=1

K∑
k=1

wk∇fk

(
θ̂

k

t−1; ξ k
t

)
,

where Ĥ is an estimator of H given in (24).Note that the computation of Ĥ of H and its
inverse Ĥ

−1 of d × d dimension is necessary for statistical inference, and those gradients

{∇fk(θ̂
k

t ; ξ k
t )|t ≥ 1,1 ≤ k ≤ K} are already calculated during the optimization process as

given in the DFL algorithm. So taking average of those gradients is only extra computation

to obtain the proposed one-step estimator
ˆ̄̄
θos

T . We summarize the procedure of the one-step
estimator in Algorithm 2 of the SM. We will see in Theorem 6, to establish the asymptotic
normality of the one-step estimator, we need both K and T increase to infinity to ensure the

validity of the following first-order expansion of the estimator
ˆ̄̄
θT when α = 1 such that∥∥∥∥∥( ˆ̄̄

θT − θ∗
K

) − H−1 1

T

T∑
t=1

K∑
k=1

wk

(∇fk

( ˆ̄θ t−1; ξ k
t

) − ∇fk

(
θ∗

K; ξ k
t

))∥∥∥∥∥
2

= op

(
1√
T K

)
.

It is also noted that the number of clients K is allowed to be finite in Theorem 3. The condition
on K for the one-step estimator is natural, since we are considering a large-scale decentralized
FL problem where many clients conduct the optimization collaboratively. For moderate K , it

suffices to use the PR-averaged estimator
ˆ̄̄
θT for statistical inference purposes.
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THEOREM 6. Under assumptions of Theorem 2 and Assumptions 4.1, 4.2 and 4.4, if

α = 1 and sup
K≥1

‖θ∗
K‖2 < ∞, then the one-step estimator

ˆ̄̄
θos

T defined in (33) admits the follow-

ing expansion:

√
T KS−1/2H

( ˆ̄̄
θos

T − θ∗
K

) = S−1/2 1√
T

T∑
t=1

K∑
k=1

√
Kwk∇Fk

(
θ∗

K; ξ k
t

) + Op

(√
K

T
+ 1√

K

)
.

Consequently, if K = o(T ),
√

T KS−1/2H (
ˆ̄̄
θos

T − θ∗
K)

d→ N (0, I ) as T and K → ∞.

Theorem 6 establishes the asymptotic efficiency of the proposed one-step estimator with
a relaxed constraint on the number K of data nodes. From the data storage perspective,

this procedure only requires saving extra 2d numbers in each data node, since both ˆ̄θk
T and∑T

t=1 ∇fk(θ̂
k

t−1; ξ k
t ) are d-dimensional vectors that can be obtained recursively. Besides, dif-

ferent from the PR-averaged estimator, the one-step estimator
ˆ̄̄
θos

T can be decomposed into

two parts:
ˆ̄̄
θT for fast statistical convergence rate and (Ĥ )−1 1

T

∑T
t=1

∑K
k=1 wk∇Fk(θ̂

k

t−1; ξ k
t )

as a correction term to improve statistical efficiency. During the optimization stage, we only
require the decentralized gradients sharing. So the proposed estimator is both communication
and statistically efficient. The construction of the confidence regions based on the one-step es-

timator
ˆ̄̄
θos

T is similar to that of the PR-averaged estimator
ˆ̄̄
θT and is implied by the following

corollary.

COROLLARY 1. Under the assumptions of Theorem 6,

P
(
T K

( ˆ̄̄
θos

T − θ∗
K

)T
�̂

−1( ˆ̄̄
θos

T − θ∗
K

) ≤ χ2
d,β

) → 1 − β as T and K → ∞.

for any constant β ∈ (0,1), where χ2
d,β is the upper β-quantile of the χ2

d distribution, �̂ =
Ĥ

−1
ŜĤ

−1, and Ĥ and Ŝ are defined in (24) and (23), respectively.

Section S4 of the SM discusses the theoretical properties of the one-step estimator for
sparsely-connected networks, such that Assumption 2.1 fails to hold: If max{|λk(C)||k =
2,3, . . . ,K} ≤ 1 − ρ′K−q < λ1(C) = 1 for some 0 < ρ′ < 1 and q ≥ 0, then the one-step

estimator achieves the same asymptotic distribution as in Theorem 6 for K = o(T
1

6q+1 ).

7. Simulation results. We report results from three sets of simulation experiments de-
signed to verify the theoretical findings in the previous sections. In all simulation experi-
ments, the decentralized connection network was constructed according to the Metropolis–
Hastings Rule in (5). Given a network size K , the nodes were denoted by their labels
1,2, . . . ,K , and a number Kneigh was used to denote the number of neighbors each node
has, which controlled the connectivity of the network. Clients k and k′ are connected if and
only if |k − k′| ≤ Kneigh

2 or |k − k′| ≥ K − Kneigh
2 . Thus, for a given K , a larger (small) Kneigh

means a tightly (loosely) connected network.
The local data of the clients or the nodes of the network were generated according to

a linear regression model. For each client k, {(Xk,t ;Yk,t )}Tt=1 were independently sampled
from the following model:

Xk,t
i.i.d∼ N (0(d−1)×1, I(d−1)×(d−1)), εk,t

i.i.d∼ �(1,1) − 1 and Yk,t = (
1,XT

k,t

)
φ∗

k + εk,t ,
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FIG. 2. Average consensus error (a) and the mean squared error of the averaged estimator ˆ̄θT (b) under different
numbers of block size K (K = 50,200 and 800) with respect to the number of SGD steps t (t ≤ T , where T was
the local sample size) when the rate α of the step size was 0.6, 0.8 and 1, respectively, and the local update
parameter τ was 1. The gap parameter δgap was 0.2 corresponding to a stronger case of heterogeneity.

where φ∗
k = (φ∗

k,1, φ
∗
k,2, . . . , φ

∗
k,d)T , �(1,1) denotes the �(1,1) random variables and the

parameter’s dimension d = 6. The true parameter θ∗
K was θ∗

K = ∑K
k=1 wkφ

∗
k where wk ≡

1/K and φ∗
k,j = δgap((k − 1) − (K − 1)/2) for a δgap > 0. This made the true parameter

θ∗
K = 0d while δgap quantifies the heterogeneity across the data blocks. The results of each

simulation setting were based on B = 500 replications.

In the first experiment, we evaluated the trajectory of the local estimates {θ̂k

t } by assessing

the averaged estimate ˆ̄θ t (1 ≤ t ≤ T ) by averaging the local estimates {θ̂k

t }1≤k≤K among the
clients, and their variability. We set the local sample size T = 1000 and the number of neigh-
bors Kneigh = (3K)/5, K ∈ {50,100,200,400,800}, the update frequency τ ∈ {1,3,5}, the
diminishing rate α ∈ {0.6,0.8,1.0}, and the delta gap δgap ∈ {0.06,0.2}.

Figure 2 reports the estimated consensus error K−1 ∑K
k=1 E(‖θ̂k

t − ˆ̄θ t‖2
2) of the local es-

timates {θ̂k

t }1≤k≤K and the mean squared error E(‖ ˆ̄θ t − θ∗
K‖2

2) of the averaged estimate ˆ̄θ t

for K = 50,200 and 800, α ∈ {0.6,0.8,1.0}, δgap = 0.2 and τ = 1. It is observed that as
t increased, both the MSE and the consensus error decreased for all choices of α. How-
ever, the decrease was faster for α = 1 than those of α = 0.6 and 0.8, confirming Theo-
rems 1 and 2, which suggest that a larger step size (smaller α) incurs a larger consensus
error.
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FIG. 3. Average consensus error (a) and the mean squared error of the averaged estimator ˆ̄θT (b) under different
numbers of local τ (τ = 1,3 and 5) with respect to the number of SGD steps t (t ≤ T , where T was the local
sample size) when the rate α of the step size was 0.6, 0.8 and 1.0, respectively, and the number of clients K was
200. The gap parameter δgap was 0.2 corresponding to a stronger case of heterogeneity.

Both Theorems 1 and 2 also suggest that∑K
k=1 E(‖θ̂k

t − ˆ̄θ t‖2
2)

KE(‖ ˆ̄θ t − θ∗
K‖2

2)
= O

(
K

tα + K

)
,

which means that the consensus error should be much smaller than the corresponding MSE
especially when t was large and K was small. Indeed, comparing Panels (a) and (b) of Fig-
ure 2, it is observed that for each given t , the ratio increased as K increased for all α, which
also verified numerically that the consensus error was no longer an ignorable term compared

with the leading term of the upper bound (19) of the averaged estimate ˆ̄θ t for a network with
large K , especially when α is small.

Figure 3 reports the estimated consensus error K−1 ∑K
k=1 E(‖θ̂k

t − ˆ̄θ t‖2
2) and the mean

squared error E(‖ ˆ̄θ t − θ∗
K‖2

2) for τ = 1,3 and 5, t ≤ 200, α ∈ {0.6,0.8,1.0}, δgap = 0.2 and
K = 200, respectively. Here we only report the first 200 steps to better capture effects of τ .
It shows that at the initial stage for t ≤ 100, a larger τ led to both a larger consensus error
and a larger MSE, and this effect was more pronounced for a smaller α. As t increased, while
the consensus error was still larger for a larger τ , there was no significant difference among
different τ for the MSEs, justifying the role of the consensus error as a second-order effect
as revealed in Theorems 1 and 2. Besides, the local update nature in the DFL algorithm was
reflected by the volatility in both the consensus error and the MSE sequences when τ > 1
along with the decreasing trend as t increased.
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TABLE 1
Empirical absolute coverage errors and the volumes (in parentheses, multiplied by 107) of the 1 − β confidence

regions for the parameter θ∗
K in the linear regression model based on the asymptotic normality of the

Polyak–Ruppert averaged estimator in decentralized FL with respect to the diminishing rate α of the step size,
the number of clients K and the local sample sizes T (the number of SGD steps). The total sample size N = KT .

The gap parameter δgap, the local update parameter τ and a(T ) were 0.05, 1 and 100, respectively

α = 0.6 α = 0.8

K T N 1 − β 0.95 0.9 0.95 0.9

100 500 5 × 104 0.008 (1.540) 0.014 (0.931) 0.006 (1.954) 0.012 (1.181)
1000 1 × 105 0.010 (0.216) 0.018 (1.307) 0.010 (0.262) 0.018 (0.158)
2000 2 × 105 0.006 (0.030) 0.000 (0.018) 0.010 (0.034) 0.010 (0.021)

200 500 1 × 105 0.018 (9.810) 0.022 (5.926) 0.020 (12.89) 0.022 (7.787)
1000 2 × 105 0.008 (1.404) 0.006 (0.848) 0.016 (1.747) 0.020 (1.056)
2000 4 × 105 0.004 (0.194) 0.002 (0.118) 0.000 (0.230) 0.006 (0.118)

400 500 2 × 105 0.012 (73.49) 0.010 (44.40) 0.010 (97.92) 0.010 (59.16)
1000 4 × 105 0.006 (10.58) 0.006 (6.393) 0.014 (13.31) 0.016 (6.751)
2000 8 × 105 0.004 (1.473) 0.004 (0.890) 0.008 (1.756) 0.008 (1.061)

Both figures suggest that the consensus error and the MSE can be quite sensitive to α. In
particular, with τ > 1 applied to a large FL network, a larger α took less steps to stabilize and
converge as shown in Figures 2 and 3. Hence, it is suggested to use a larger α, especially for
larger FL networks. Figures S1–S4 report more results of this experiment.

In the second experiment, we assessed the asymptotic normality of the PR-averaged es-
timator by calculating the empirical absolute coverage errors and volumes of the 95% and
90% “confidence regions” (CRs), constructed according to (26) based on Theorem 4 with
δgap = 0.05, K ∈ {100,200,400}, Kneigh = (3K)/5, T ∈ {500,1000,2000}, τ ∈ {1,2} and
a(T ) ∈ {25,100}. The empirical coverage error is calculated as the difference between the
nominal confidence level and the simulated coverage probability based on B = 500 repli-
cations of each simulation setting. It is noted that as the “confidence regions” were d-
dimensional ellipses, their volumes can be calculated numerically. Table 1 reports the em-
pirical absolute coverage errors and the average volume of the CRs when the number of
local update τ = 1 and a(T ) = 100, which conveyed quite good coverage. Indeed, the cover-
age accuracy was quite uniformly maintained with respect to the step-size α, the number of
clients K and the local sample size T . The effects of K and T were shown in the volume of
the CRs. For each given K , the volume of the CRs decreased as the minimum local sample
size T increased, and on the other hand, for a given T , the volume increased as K increased.
This reflected the underlying variance of the PR-averaged estimator. Besides, the volumes
of the constructed CRs when α = 0.8 were larger than those when α = 0.6, which means
that for each dimension, the width of the CRs when α = 0.8 was in average 3% − 5% wider
than that of the CRs when α = 0.6, reflecting the slightly under-estimation of the asymptotic
covariance matrix when α = 0.6 as shown in Table S4 in the SM. In comparison, when τ

increased to 2 as shown in Table 2, the coverage errors of the CRs when α = 0.6 were much
larger than those when α = 0.8 due to a larger consensus error according to Theorem 1. For
both choices of the step sizes, the coverage errors decreased as T and K increased due to
the larger total sample size. Besides, in most cases except K = 100 and α = 0.6, the vol-
umes of the CRs when τ = 2 were slightly smaller than those when τ = 1. Similar results
were obtained when a(T ) = 25 (see Tables S2–S3 in the SM), which shows the robustness
of the procedure against different choices of a(T ). In practice, a(T ) can be chosen so that
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TABLE 2
Empirical absolute coverage errors and the volumes (in parentheses, multiplied by 107) of the 1 − β confidence

regions for the parameter θ∗
K in the linear regression model based on the asymptotic normality of the

Polyak–Ruppert averaged estimator in decentralized FL with respect to the diminishing rate α of the step size,
the number of clients K and the local sample sizes T (the number of SGD steps). The total sample size N = KT .

The gap parameter δgap, the local update parameter τ and a(T ) were 0.05, 2 and 100, respectively

α = 0.6 α = 0.8

K T N 1 − β 0.95 0.9 0.95 0.9

100 500 5 × 104 0.484 (3133) 0.543 (1893) 0.116 (1.624) 0.158 (0.981)
1000 1 × 105 0.326 (48.95) 0.404 (29.57) 0.072 (0.227) 0.096 (0.137)
2000 2 × 105 0.218 (0.891) 0.284 (0.539) 0.036 (0.031) 0.068 (0.019)

200 500 1 × 105 0.228 (12.73) 0.290 (7.670) 0.058 (10.34) 0.082 (6.248)
1000 2 × 105 0.114 (1.310) 0.150 (0.792) 0.028 (1.475) 0.038 (0.891)
2000 4 × 105 0.082 (0.165) 0.096 (0.099) 0.018 (0.204) 0.026 (0.123)

400 500 2 × 105 0.106 (69.59) 0.140 (39.79) 0.026 (77.60) 0.044 (46.88)
1000 4 × 105 0.048 (8.377) 0.064 (5.061) 0.016 (11.16) 0.028 (6.742)
2000 8 × 105 0.040 (1.150) 0.042 (0.695) 0.010 (1.554) 0.008 (0.939)

a(T ) ≥ max{T 2α−1/K2,C0}, based on the proof of Theorems 3 and 4 in the SM, where C0
is a positive integer, for instance 25.

In the third experiment, we evaluated and compared the coverage accuracy, the bias

and variance of the PR-averaged (PR) estimator
ˆ̄̄
θT and the one-step (OS) estimator

ˆ̄̄
θos

T

for θ∗
K with the number of clients or nodes K ∈ {500,200,800}, the local sample size

T ∈ {200h|h = 1,2, . . . ,10}, the connection network Kneigh = 10, and the heterogeneity pa-
rameter δgap ∈ {0.2,0.01} and a(T ) = 100. Figures 4 and 5 displays the absolute coverage
errors of the 95% confidence regions for θ∗

K when δgap = 0.2 and 0.01, respectively. In both
figures, the advantages of the proposed one-step estimator over the PR-averaged estimator
in term of having more accurate CRs were very visible in Panel (a) when K was larger
(K = 800), which was readily seen for smaller T for K = 200. This suggested that the pro-
posed one-step estimator is more suitable for the decentralized FL as it often has large K and
small T . The figures also show that the one-step estimator had smaller bias and variance than
the PR-averaged estimator for the large K but small T scenario, although the PR-averaged es-
timators gradually outperformed the one-step estimators in the bias and variance as T was in-
creased. Moreover, the effect of heterogeneity was shown by a comparison between Panel (b)
of Figures 4 and 5. Specifically, when the heterogeneity was large (δgap = 0.2), for each given
local sample size T , the bias of the estimators did not decrease as K increased, although a
larger K means a larger total sample size N = KT . In contrast, when the heterogeneity was
weak (δgap = 0.01), the bias of the estimator did decrease as K increased.

8. Discussion. This study investigates the decentralized FL in the context of client het-
erogeneity, where the clients can only share gradient information with their neighbors defined
via a connection network. The Polyak–Ruppert (PR) averaged estimator are analysed in the
decentralized FL setting that allows diverging network size, and the corresponding confidence
regions are constructed. The one-step estimator is shown to permits larger network size than
the Polyak–Ruppert (PR) averaged estimator, without sacrificing statistical efficiency.

It is noted that the convergence of the local estimators in the decentralized FL can be fur-
ther improved by implementing two techniques. One is to involve acceleration (Qian (1999),
Johnson and Zhang (2013)), which was initially designed for the nondistributed SGD estima-
tor. The second technique is the bias correction technique, say Exact Diffusion (Yuan et al.
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FIG. 4. Empirical absolute coverage errors of the 95% confidence regions (a) based on the asymptotic normality
of the one-step estimator (OS, α = 1,0.8,0.6) and the Polyak–Ruppert averaged estimators (PR, α = 0.8,0.6),
the ℓ2 norm of the bias (b) and the Frobenius norm of the sample covariance matrices (c) with respect to K and T .
The gap parameter δgap was 0.2 corresponding to a stronger case of heterogeneity.
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FIG. 5. Empirical absolute coverage errors of the 95% confidence regions (a) based on the asymptotic normality
of the one-step estimator (OS, α = 1,0.8,0.6) and the Polyak–Ruppert averaged estimators (PR, α = 0.8,0.6),
the ℓ2 norm of the bias (b) and the Frobenius norm of the sample covariance matrices (c) with respect to K and T .
The gap parameter δgap was 0.01 corresponding to a weaker case of heterogeneity.
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(2020)) or Gradient Tracking methods (Nedić, Olshevsky and Shi (2017)), which is designed
specifically for decentralized optimization. Both the acceleration and bias correction tech-
niques may be used to further relax the constraints on the number of blocks K relative to the
local sample size T for both the PR-averaged estimator and the proposed one-step estimator,
in both dense and sparse networks. These are interesting topics for future research.

Funding. This research is supported by National Natural Science Foundation of China
grants 12292980, 12292983 and 92358303.

SUPPLEMENTARY MATERIAL

Supplement to “Statistical inference for decentralized federated learning.” (DOI:
10.1214/24-AOS2452SUPP; .pdf). In the SM, we present technical details, proofs of main
theorems and additional numerical results.
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NEDIĆ, A., OLSHEVSKY, A. and RABBAT, M. G. (2018). Network topology and communication-computation
tradeoffs in decentralized optimization. Proc. IEEE 106 953–976. https://doi.org/10.1109/JPROC.2018.
2817461

NEDIĆ, A., OLSHEVSKY, A. and SHI, W. (2017). Achieving geometric convergence for distributed optimization
over time-varying graphs. SIAM J. Optim. 27 2597–2633. MR3738851 https://doi.org/10.1137/16M1084316

NGUYEN, L. M., NGUYEN, P. H., RICHTÁRIK, P., SCHEINBERG, K., TAKÁČ, M. and VAN DIJK, M. (2019). New
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